Viscosity of Gaseous HFC-134a (1,1,1,2-Tetrafluoroethane) Under High Pressures

N. Shibasaki-Kitakawa,¹ M. Takahashi,¹ and C. Yokoyama^{1, 2}

Received September 10, 1997

The viscosity of gaseous HFC-134a (1,1,1,2-tetrafluoroethane) was measured with an oscillating disk viscometer of the Maxwell type from 298.15 to 398.15 K at pressures up to 5.5 MPa. Intermolecular potential parameters for the Lennard–Jones 12-6 model were determined from the viscosity data at 0.1 MPa. The viscosity equation developed by Krauss et al. was applied to correlate the present viscosity data. In addition, the correlations proposed by Stiel and Thodos and by Lee and Thodos were tested for fitting the experimental viscosity data.

KEY WORDS: HFC-134a; Lennard-Jones potential; viscosity.

1. INTRODUCTION

There has recently been great interest in the thermophysical properties of HFC-134a (1,1,1,2-tetrafluoroethane), since it is considered to be an environmentally acceptable alternative to CFC-12. Furthermore, HFC-134a is one of the constituent components for ternary mixtures of HFC-134a + HFC-125 + HFC-32.

To establish a prediction method for the viscosity of the ternary mixture in the gas phase, we started to measure the viscosity of the three pure components and of the three binary gas mixtures of HFC-134a, HFC-125, and HFC-32. In 1990, we presented our first data for HFC-134a at a conference held in Sendai [1]. Subsequently, some researchers measured the viscosity of gaseous and liquid HFC-134a and also developed a viscosity equation from a theoretical point of view. Recently, Vogel pointed out to us that our previous data in Ref. 1 are about 5% higher than

¹ Institute for Chemical Reaction Science, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai 980-8577, Japan.

² To whom correspondence should be addressed.

⁰¹⁹⁵⁻⁹²⁸X/98/0900-1285\$15.00/0 (C) 1998 Plenum Publishing Corporation

those of other researchers including the data obtained by his group; this discrepancy probably arises from impurities contained in the samples as suggested by the temperature dependence of the deviations between our previous data and the literature values [2]. Since the sample used in our previous study had already been discharged, we could not check the purity of the sample used in our previous study. Therefore, in this study we tried to measure the gas viscosity of HFC-134a again, with a new sample. The measurements were made at temperatures from 298.15 to 423.15 K and at pressures up to 5.5 MPa. The experimental results were correlated with the theoretical viscosity equation developed by Krauss et al. [10], and then compared with the correlations of Stiel and Thodos [3] and of Lee and Thodos [4].

The gas viscosity of HFC-134a at normal pressure has been measured by Nabizadeh and Mayinger [6], Dowdell and Matthews [7], and Wilhelm and Vogel [8]. Ruvinskii et al. [5] and Pasekov and Ustyushanin [9] measured the gas viscosity under high pressures. Krauss et al. [10] developed a generalized viscosity equation based on the experimental data published previously in the open literature before 1993.

2. EXPERIMENTS

The viscosity was measured with an oscillating disk viscometer of the Maxwell type. The gas density was measured with a high-pressure gas pipette. The experimental apparatus and procedure were essentially the same as those described in previous studies [11–13]. The apparatus constant at the experimental temperature and pressure conditions was determined by considering the viscosity data of nitrogen taken from Stephan et al. [14] and the nitrogen gas density data from Jacobsen and Stewart [15]. Temperature and pressure values have an uncertainty of ± 0.01 K and ± 0.5 kPa. Density values have an uncertainty of ± 0.03 kg \cdot m⁻³. The error in the measurements of viscosity was estimated to be ± 0.3 %. The sample was supplied by Asahi Glass Co. Ltd. The purity of the sample, certified by the suppliers, was approximately 99.9%. The sample used was purified by distillation several times.

3. RESULTS

The experimental results for viscosity and density are presented in Table I and displayed in Figs. 1 and 2. As seen in Fig. 1, the curves as a function of pressure intersect around a temperature of 373.15 K, but the curves as a function of density do not, as seen in Fig. 2. This behavior of the viscosity is a well known characteristic of nonpolar and polar gases.

P (MPa)	$(kg \cdot m^{-3})$	η (μ Pa · s)
	T = 298.15 K	
0 1001	4 230	11.815
0.2033	8,714	11.769
0 3064	13.458	11.748
0.4074	18 367	11 711
0.5182	24 044	11 689
0.5182	29.881	11.666
0.0107	Z7.001	11.000
	I = 323.15 K	
0.1011	4.137	12.768
0.2029	7.921	12.738
0.2537	9.899	12.751
0.3090	12.125	12.745
0.3450	13.613	12,744
0.4277	17.146	12.714
0.5491	22.622	12.744
0 5521	22.759	12.724
0.6795	28 891	12.736
0.7268	31 263	12.751
0.8194	36.066	12 752
0.9246	41 766	12.752
1.0230	41.700	12.802
1.2111	58.607	12.852
	T = 348.15 K	
0 1014	3.607	13 771
0.1037	3 756	13.757
0.1057	7 426	13.757
0.2009	10 883	13.740
0.2990	10.885	13.749
0.3021	14 810	13.735
0.4010	19 209	12 726
0.4675	19.200	13.720
0.5003	10.733	13.729
0.5981	22.708	13.727
0.6911	20.393	13.780
0.6995	26.592	13.760
0.8376	32.913	13.818
0.9925	39.886	13.837
1.1878	49.197	13.878
1.3426	57.100	13.944
1.4988	65.669	14.030
1.6506	74.708	14.156
1.8291	86.465	14.291
1.9730	97.016	14.459
2.1309	109.95	14.647
2.2361	119.47	14.838

Table 1. Viscosity of HFC-134a

P	ρ	η
(MPa)	$(kg \cdot m^{-3})$	$(\mu \mathbf{Pa} \cdot \mathbf{s})$
	<i>T</i> = 373.15 K	
0.1013	3.317	14.735
0.1021	3.387	14.748
0.2223	7.627	14.726
0.3441	11.888	14.743
0.3913	14.684	14,762
0.4649	17.182	14.745
0.5924	21.338	14.767
0.6899	24.498	14.766
0.7347	25,969	14.797
0.8751	30.748	14.819
0.9287	32.664	14.842
1.0057	35.516	14.866
1.1806	42.497	14.912
1.4236	53.388	15.012
1.6742	65.897	15.150
1.9260	79.436	15,347
2.1604	91,288	15.509
2.3992	105.23	15.751
2.6156	119.81	16.065
2.8425	136.83	16.414
3.0051	150.75	16.733
3.1914	168.36	17.202
3.3609	187.57	17.744
3.4745	202.61	18.204
3.5849	219.60	18.716
3.6850	238.36	19.396
3.7457	252.68	19.938
3.7974	264.90	20.410
3.8509	283.66	21.167
3.8802	293.86	21.633
3.9057	310.41	22.413
3.9284	324.12	23.084
	T = 398.15 K	
0.1017	3.136	15.685
0.1023	3.182	15.708
0.2212	6.994	15.661
0.3550	11.329	15.680
0.3978	12.729	15.729
0.4756	15.297	15.711
0.6098	19.784	15.740
0.6923	22.587	15.756
0.7548	24.734	15.760
0.8896	29.435	15.801

Table I. (Continued)

32.919 34.129 43.933 55.505 67.728 79.551 90.027 102.74 114.07	15.851 15.847 15.938 16.057 16.234 16.401 16.590 16.830
32.919 34.129 43.933 55.505 67.728 79.551 90.027 102.74 114.07	15.851 15.847 15.938 16.057 16.234 16.401 16.590 16.830
34.129 43.933 55.505 67.728 79.551 90.027 102.74 114.07	15.847 15.938 16.057 16.234 16.401 16.590 16.830
43.933 55.505 67.728 79.551 90.027 102.74 114.07	15.938 16.057 16.234 16.401 16.590 16.830
55.505 67.728 79.551 90.027 102.74 114.07	16.057 16.234 16.401 16.590 16.830
67.728 79.551 90.027 102.74 114.07	16.234 16.401 16.590 16.830
79.551 90.027 102.74 114.07	16.401 16.590 16.830
90.027 102.74 114.07	16.590 16.830
102.74 114.07	16.830
114.07	
	17.064
130.75	17.422
145.50	17.783
163.87	18.264
181.90	18.810
204.36	19.485
230.48	20.346
255.14	21.116
282.27	22.380
318.38	24.113
346.94	25.564
372.32	27.118
395.88	28.693
T = 423.15 K	
2.952	16.600
6.837	16.604
10.623	16.640
15.104	16.670
19.620	16.691
24.294	16.722
28.988	16.740
33.707	16.804
38.638	16.855
44.105	17.026
54.965	17.153
67.361	17.290
85.901	17.566
104.95	17.954
122.69	18.338
131.05	18.546
150.88	19.106
174.96	19.673
194.39	20.290
221.58	21.170
239.09	21.691
251.09	22.300
	114.07 130.75 145.50 163.87 181.90 204.36 230.48 255.14 282.27 318.38 346.94 372.32 395.88 T = 423.15 K 2.952 6.837 10.623 15.104 19.620 24.294 28.988 33.707 38.638 44.105 54.965 67.361 85.901 104.95 122.69 131.05 150.88 174.96 194.39 221.58 239.09 251.09

 Table I. (Continued)

Fig. 2. Viscosity of HFC-134a as a function of density.

From Fig. 2, it can be seen that a negative initial density slope was observed for the viscosity isotherm at 273.15 K. This behavior has also been observed in our previous studies of polar gases [16–21].

For the gas viscosity at 0.1 MPa, the present results agree quite well with the viscosity data of Wilhelm and Vogel [8]. The data of Nabizadeh and Mayinger [6] are about 0.5% higher than the present results, and the data of Paskov and Ustyushanin [9] and Ruvinskii et al. [5] are about 0.5–2.0% lower. While the present data agree with those of Dowdell and Matthews [7] within $\pm 0.5\%$, the data of Dowdell and Matthews show a weaker temperature dependency than the present results and those of Wilhelm and Vogel [8]. The viscosity data at 0.1 MPa of Paskov and Ustyushanin [9] were obtained by extrapolation based on using the initial density dependence data of the viscosity as measured by Wilhelm and Vogel [8]. The viscosity data of Ruvinskii et al. [5] were determined by extrapolating their data at high pressures to 0.1 MPa.

Krauss et al. [10] have expressed the viscosity at atmospheric pressure, $\eta_0/(\mu Pa \cdot s)$, using the following equation:

$$\eta_0 = \frac{0.2696566T^{0.5}}{\sigma^2 \Omega(T^*)} \tag{1}$$

where T is the temperature in K, σ is a length scaling factor in nm, and Ω is a non-dimensional collision integral. The dimensionless temperature T^* is defined as:

$$T^* = kT/\varepsilon \tag{2}$$

where k is Boltzmann's constant in $J \cdot K^{-1}$ and ε/k is the energy scaling factor. For the collision integral Ω , a formula presented by Bich et al. [22], shown by Eqs. (3) and (4), is used.

$$\ln \Omega(T^*) = \sum_{i=0}^{4} a_i (\ln T^*)^i$$
 (3)

with coefficient a_i :

$$a_0 = 0.4425728, \quad a_1 = -0.5138403, \quad a_2 = 0.1547566$$

 $a_3 = -0.02821844, \quad a_4 = 0.001578286$ (4)

Krauss et al. [10] determined the values of the energy and length scaling factors, ε/k and σ , from the data of Takahashi et al. [1], Nabizadeh and Mayinger [6], and Dowdell and Matthews [7]. Since the data of

Fig. 3. Deviations of experimental viscosity values of HFC-134a at 0.1 MPa from those calculated with Eq. (1).

Takahashi et al. [1] have been found to be erroneous, we redetermined the values of these two factors with the use of the present results and the data of Wilhelm and Vogel [8]. The following values were obtained from a least-squares fit; $\epsilon/k = 301.06$ K and $\sigma = 0.5016$ nm. Figure 3 shows the deviation of our data from Eq. (1). It can be seen that fairly good agreement is obtained with Eq. (1).

The present values of the viscosity at high pressures were compared with those calculated form the viscosity equation proposed by Krauss et al. [10]. Based on the excess viscosity concept, Krauss et al. [10] developed the following viscosity equation for HFC-134a applicable for gas and liquid states except those very close to the critical region:

$$\eta(\rho, T) = \eta_0(T) + \Delta_R \eta(\rho) \tag{5}$$

where the first term of the r.h.s. is the dilute gas viscosity given by Eq. (1), and the second term is the excess term. The excess term is represented by

$$\Delta_R \eta / H_c = \sum_{i=1}^{3} e_i (\rho / \rho_c)^i + \frac{e_4}{(\rho / \rho_c) - e_5} + \frac{e_4}{e_5}$$
(6)

where $\rho_c = 515.25 \text{ kg} \cdot \text{m}^{-3}$ is the critical density and $H_c = 25.21 \mu \text{Pa} \cdot \text{s}$ is a so-called pseudo-critical viscosity. The coefficients in Eq. (6) are:

$$e_1 = -1.89758$$
, $e_2 = 0.256449$, $e_3 = -0.301641$
 $e_4 = -23.1648$, $e_5 = 3.44752$

Fig. 4. Deviations of experimental viscosity values of HFC-134a from those calculated with Eq. (5).

Fig. 5. Deviations of experimental viscosity values of HFC-134a under high pressures from those calculated with Stiel–Thodos correlation.

Table II. Physical Properties of HFC-134a

Molar weight mass	102.031 g · mol ⁻¹
T_c	374.27 K
P_c	4.065 MPa
V_c	199 cm ³ · mol ⁻¹
Dipole moment	1 D

Fig. 6. Deviations of experimental viscosity values of HFC-134a under high pressures from those calculated with Lee–Thodos correlation.

Figure 4 shows the deviations of the present results from Eq. (5). For comparison, the deviation of the literature values of Nabizadeh and Mayinger [6] and Pasekov and Ustyushanin [9] are also shown. The data of Nabizadeh and Mayinger [6] show a larger density dependence than those of the present data. For engineering applications, we tried to correlate the present results with the viscosity equations proposed by Stiel and Thodos [3] and Lee and Thodos [4]. Table II lists the physical properties of HFC-134a taken from the JAR Thermodynamic Tables [23]. Figures 5 and 6 show the deviations of the present results from the correlations of Stiel and Thodos [3] and Lee and Thodos [4], respectively. Although Stiel and Thodos, and Lee and Thodos recommended their own equations for the viscosity at 0.1 MPa, we applied Eq. (1) for calculations of the viscosity at normal pressure in both correlations. It can be seen that the Lee-Thodos correlation represents the present results within 5%, which is satisfactory for practical purposes. However, the Stiel-Thodos correlation gives large deviations at high densities.

REFERENCES

- 1. M. Takahashi, C. Yokoyama, and S. Takahashi, Proc. 30th High Press. Conf. of Japan (Sendai, 1989), pp. 372-373.
- 2. E. Vogel, private communication (1996).
- 3. L. I. Stiel and G. Thodos, AIChE J. 10:275 (1964).
- 4. H. Lee and G. Thodos, Ind. Eng. Chem. Res. 27:2377 (1988).

Viscosity of Gaseous HFC-134a

- G. Ya Ruvinskii, G. K. Lavrenchenko, and S. V. Iiyushenko, *Kholod. Tekh.* 7:20 (1990) (translated); G. K. Lavrenchenko, G. Ya Ruvinskii, S. V. Iiyushenko, and V. V. Kanaev, *Int. J. Refrig.* 15:386 (1992).
- 6. H. Nabizadeh and F. Mayinger, High Temp. High Press. 24:221 (1992).
- 7. D. C. Dowdell and G. P. Matthews, J. Chem. Soc. Faraday Trans 89:3545 (1993).
- J. Wilhelm and E. Vogel, Proc. 4th Asian Thermophys. Prop. Conf., A. Nagashima, ed. (Tokyo, 1995), pp. 627–630.
- 9. M. F. Pasekov and E. E. Ustyushanin, Teplofiz. Vys. Temp. 32:630 (1994).
- R. Krauss, J. Luettmer-Strathmann, J. V. Sengers, and K. Stephan, Int. J. Thermophys. 14:951 (1993).
- 11. M. Takahashi, C. Yokoyama, and S. Takahashi, J. Chem. Eng. Data 33:267 (1988).
- 12. M. Takahashi, C. Yokoyama, and S. Takahashi, Trans. JAR 6:57 (1989).
- 13. C. Yokoyama, M. Thakahashi, and S. Takahashi, Int. J. Thermophys. 15:603 (1994).
- 14. K. Stephan, R. Krauss, and A. Laesecke, J. Phys. Chem. Ref. Data 16:993 (1987).
- 15. R. T. Jacobsen and R. T. Stewart, J. Phys. Chem. Ref. Data 2:757 (1973).
- 16. H. Iwasaki and M. Takahashi, Rev. Phys. Chem. Japan 38:18 (1968).
- 17. M. Takahashi, S. Takahashi, and H. Iwasaki, Kagaku Kogaku Ronbunshu 9:482 (1983).
- 18. M. Takahashi, S. Takahashi, and H. Iwasaki, Kagaku Kogaku Ronbunshu 10:7 (1983).
- 19. M. Takahashi, C. Yokoyama, and S. Takahashi, Kagaku Kogaku Ronbunshu 11:155 (1985).
- 20. M. Takahashi, C. Yokoyama, and S. Takahashi, Trans. JAR 4:25 (1987).
- 21. M. Takahashi, N. Shibasaki-Kitakawa, C. Yokoyama, and S. Takahashi, J. Chem. Eng. Data 40:900 (1995).
- 22. E. Bich, J. Millat, and E. Vogel, Wiss. Z. Wilh.-Pieck-Univ. Rostock 36:5 (1987).
- 23. H. Sato, Y. Higashi, M. Okada, Y. Takaishi, N. Kagawa, and M. Fukushima, eds., JAR Thermodynamic Tables, Vol. 1, HCFCs and HCFCs (JAR, Tokyo, Japan, 1994).